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REAL OPTION VALUE 

 

CHAPTER 4   AMERICAN PERPETUAL REAL OPTIONS 

 

 

Perhaps the first real American perpetual options were identified by the University of 

Manchester economics professor, Jevons (1871).  He noted that in effect there were real 

(environmental) options in the prospective use of a commons, which "might be allowed 

to perish at any moment, without harm, if we could have it re-created with equal ease at a 

future moment, when need of it arises".   

 

4.1 SAMUELSON-MCKEAN AMERICAN PERPETUAL OPTION VALUE 

 

Samuelson (1965) (with McKean) developed an analytical solution for a perpetual 

American (that can be exercised any time) option.  This is appropriate to value a 

perpetual opportunity to convert land into buildings. There are five inputs required for 

this early real call option model: the riskfree interest rate (r), the yield on the built 

property (), the construction cost (K), the value (V) and the expected volatility () of the 

built property. The value of the real call option is  
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When the value of the underlying built property reaches V*, the land conversion option 

should be exercised, that is construction should commence. 
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Figure 4.1 

 

Figure 4.1 shows both the intrinsic and option value of land which is a development site 

for an office building with a construction cost of $1 (or $1 per square foot, if you like).  

The rental yield of the office when constructed is expected to be 4%, the riskfree interest 

rate is 4%, and the volatility of the value of the office building is expected to be 20%.  

Note that under these assumptions, the office should not be built until the building is 

worth $2.00   (or $2 per square foot).  The intrinsic value (V-K) is nil, but the real option 

to defer construction until V reaches V* is worth $ .25.  

 

     Figure 4.2 
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                                                                                                       SAMUELSON-MCKEAN: REAL AMERCAN PERPETUAL CALL OPTION
AFTER SAMUELSON-McKEAN (1965)

INPUTS

Yield,  0.04

Riskless rate, rf 0.04

Asset Volatility 0.20

Investment Cost, K $1.00

Developed Asset Value, V $1.00

OUTPUTS

 2.00 (B5-B6+(B7^2)/2+SQRT((B6-B5-(B7^2)/2)^2+2*B6*(B7^2)))/(B7^2)

V* $2.00 B8*B12/(B12-1)

DEVELOPMENT OPTION VALUE $0.25 IF(B9>$B$13,B15,($B$13-$B$8)*((B9/$B$13)^$B$12))

INTRINSIC OPTION VALUE $0.00 IF(B9-$B$8>0,(B9-$B$8),0)

DELTA 0.50 MIN((((B9*($B$12-1))/(($B$8*$B$12)))^($B$12-1)),1)

Samuelson-McKean Real 
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Figure 4.2 shows the real American perpetual call option over a range of V from 0 to 

$2.00.  There is nil intrinsic option value until V>$1; the land conversion option is 

greater than the intrinsic value until V>V*, that is past $2, when then the option value 

equals the intrinsic value.   

 

Delta is the rate of change of the call option value as the value of the underlying asset 

changes (it is also the slope of the real call option curve).  The ROV delta is 
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(see Appendix 4A, equation A7), and increases from 0 when V is 0 to 1 when V>V*.   

     Figure 4.3 

 

A real call option value increases with the value of the underlying asset, and also with 

increases in the volatility of the underlying asset.  Figure 4.3 shows that the real call 

option value increases with the volatility of the underlying asset, and also that V*, the 

critical value at which the investment should made, increases with volatility.  The 

assumptions in this illustration are that currently V=K=$1, that is the call option is at-the-

money, and the expected future volatility ranges from 5%, where the call option has low 

value, to 25% per annum, where the call option to build is 31% of the gross value of the 

office building when constructed.  At 25% volatility, however, the developed property 

would have to be worth more than $2.36 before exercising the option. Notice that the 

Delta increases slightly with the increase of volatility.  Gamma (see Appendix 4A, 

equation A8) is the rate of change of Delta, which is affected by volatility, interest rates 

$0.00

$0.50

$1.00

$1.50

$2.00

$2.50

5.0% 7.5% 10.0% 12.5% 15.0% 17.5% 20.0% 22.5% 25.0%

ASSET VOLATILITY

ROV, DELTA and V* AS FUNCTION OF ASSET VOLATILITY

V*

ROV

DELTA



 43 

and the payout yield. Value, Delta and Gamma as functions of the interest rate level are 

shown in Figure 4.4. 

     Figure 4.4 

 

 

One reason for examining the sensitivities of the real American perpetuity to changes in 

parameter values is to envisage some of the problems in trying to replicate such an option 

using dynamic positions in the underlying asset plus positions in other similar real 

options and financial/commodity securities.  Note that the ROV (real option value), ROV  

Δ (rate of change of ROV as V changes), and ROV Γ (rate of change of delta changes as 

V changes) are affected by β changes, due to alterations in the interest rate, asset yield or 

asset volatility.  So ROV, ROV Δ and ROV Γ are all likely to change over time, as the 

underlying asset and other economic parameter values change.  

 

 

4.2   DERIVATION OF THE AMERICAN PERPETUAL OPTION MODEL 
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Samuelson (1965) was actually concerned with valuing an American perpetual warrant 

(presumably on a traded stock), but subsequently several authors including Tourinho 

(1979), Brennan and Schwartz (1985) and McDonald and Siegel (1986) extended this 

model to cover non-traded real assets and the optimal timing of investing in a project 

where the investment costs are sunk.  

 

Consider a company with the opportunity to invest in a certain project; the investment cost 

is irreversible or irrecoverable once incurred. The investment cost K is known, or 

deterministic, while the present value of the project gross cash flows, V, follows a 

geometric Brownian motion: 

 

dV Vdt Vdz                   (4.5) 

 

where  is the growth rate or drift parameter; σ the volatility and dz the increment of a 

Wiener process. In a risk neutral world, or in perfect hedging which earns the riskless 

return, =r-δ, where δ is the asset yield.  Since the company has the right, but not the 

obligation, to invest in such a project, the investment opportunity can be seen as a call 

option.  Appendix 4A shows that the value of the opportunity to invest can be represented 

by the following differential equation: 
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Equation (4.6) is a second order linear ordinary differential equation (“ODE”) with the 

solution: 
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where roots β1 and β2 are the solutions of the characteristic quadratic equation
1
: 

 

                                                 
1
 See Appendix 4A for the basic solution of a quadratic equation. 
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and therefore β1 and β2 are respectively: 
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Equation (4.7) gives the value of the option to invest in a project with a gross present value 

V. As V decreases, the value of the option to invest in the project has also to decrease and 

therefore the value yielded by equation (4.7) has to decrease. Moreover, due to the 

stochastic process followed by V, when V reaches zero it will stay there forever. This 

boundary condition implies that B has to be zero. Therefore the solution can be written as: 
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The value of the arbitrary constant, A, is found subjecting equation (4.11) to two boundary 

conditions: the value matching and the smooth pasting conditions. The value matching 

condition states that when V reaches a trigger value, V*, the option will be exercised and 

therefore, at that point, the investor receives the net present value of the project. In other 

words, at V* the value of the option to invest equals the net present value of the 

investment. In mathematical terms: 

 

KVAV  ** 1              (4.12) 
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The smooth pasting condition states that at the trigger value the derivatives of the two 

functions in (4.12) must be equal. Notice that the two functions in equation (4.12), the 

option and the net present value of the investment, meet tangentially at the trigger point.  
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Solving (4.12) and (4.13) we obtain the arbitrary constant and the trigger function
2
: 
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Finally, substituting for A in equation (4.11), we obtain the value of the option to invest in 

a project where the present value of future cash flows follows a geometric Brownian 

motion: 
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The spreadsheet “proof” that this is the solution of equation 4.6 is shown in Figure 4.5. 

 

 

  

 

 

    Figure 4.5 

                                                 
2
 See Appendix 4A. 
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F(V) is from equation 4.16, F’(V) and F’’(V) are from Appendix 4A (A7, A8); the 

calculation for F(V) and its first and second derivative is substituted into equation 4.6, row 

16 ODE, which is equal to zero. 

 

4.3    INVESTMENT TIMING and SENSITIVITIES 

 

The trigger value function presented in equation (4.15) implies an investment rule different 

from the classical theories. The Marshall (1890) rule is to invest as soon as the present 

value of the expected cash flows exceeds the investment cost, in other words the optimal 

Marshallian investment time is given by: 

 

*V K                           (4.17) 

 

The trigger function as defined by equation (4.15) is larger than the Marshallian trigger by 

β1/(β1-1). Since β1>1, the real option V*>K.  With the parameters in Figure 4.1, V*=2K, 

since β1=2.  As investment cost increases, the value of the Marshallian and the trigger 

function also increase. The two functions are further apart for higher values of investment 

cost (since K is multiplied by a number greater than 1). Thus using a real options 
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                                                       Perpetual American Option
INPUT EQS

V 100.00

K 100.00

 0.20

r 0.04

 0.04

OUTPUT

F(V) 25.00 IF(B3<B12,B13*(B3^B14),B10) 4.11, 4.16

V-K 0.00 B3-B4

F'(V) 0.50 IF(B3<B12,B13*B14*(B3^(B14-1)),1) A7

V* 200.00 (B14/(B14-1))*B4 4.15

A 0.0025 (B12-B4)/(B12^B14) 4.14

1 2.00

1 0.5-(B6-B7)/(B5^2)+SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 4.9

ODE 0.00 0.5*(B5^2)*(B3^2)*B17+(B6-B7)*B3*B11-B6*B9 4.6

F''(V) 0.01 IF(B3<B12,B13*B14*(B14-1)*(B3^(B14-2)),0) A8

F'(V*) 1.00 B13*B14*(B12^(B14-1)) 4.13

F(V*) 100.00 IF(B3<B12,B13*(B12^B14),B10) 4.12

V*-K 100.00 B12-B4 4.12
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investment model is a conservative view of the investment, recommending greater caution 

than traditional valuation methods. 

 

The Marshallian trigger is indifferent to volatility. In the Marshallian theory the future 

investment cost and the present value of the future cash flows are not stochastic. Real 

options have an entirely different approach, the future is stochastic and therefore 

uncertainty should be considered in the valuation framework. As uncertainty increases, the 

trigger function increases. Thus, in more volatile markets the investors should wait longer 

to invest, with the expectation that some of the uncertainty will be resolved during the 

waiting process and/or V will increase sufficiently to justify investment. 

 

We indicated in the first section that V*, the ROV, ROV delta (Δ) and ROV gamma (Γ) 

are all sensitive to changes in interest rates, asset volatility and asset yield.  Conventional 

traded option pricing texts refer to the interest rate sensitivity of the real option as “rho” 

and the volatility sensitivity as “vega”.  Calculation of these sensitivities (option “Greeks”) 

for real American perpetual options is somewhat complicated, since interest rates (and 

asset yields) appear inside the square root solution of β1, and volatility is a denominator 

and also inside the square root solution.  However, the intuition consistent with Figures 4.3 

and 4.4 is that V*, ROV and ROV Δ are positive functions of both the interest rate and 

volatility, and negative functions of asset yield, while ROV Γ  has the opposite 

sensitivities.   

     

It is assumed in the derivation of real option pricing model that a hedged portfolio of an 

option and a short position in the underlying assets can be constructed so that over time its 

return is riskless (see equations A1 through A6).  Perpetual American option deltas and 

gammas are somewhat different than for finite European options, as shown in Appendix 

4A.  Such discrete time hedges are likely to result in marginal gains/losses, even without 

transaction costs, as shown in Figure 4.6. 
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 Figure 4.6 

 

Over this particular time sequence of changes in V (shown in bold blue) and parameters, 

the “delta” hedging of a long position in the real option by a short Δ times V position in an 

identical underlying asset, assuming no transaction costs, and readjusting the short position 

every end period, results in gaines/losses for every period (shown in bold red).  The RISK 

ROV is the change in the ROV divided by the initial ROV; the RISK ROV HEDGED is 

the change in the ROV less the change in the hedge gain/loss, divided by the initial ROV.  

The last column RISK is the standard deviation of the respective rows, showing that 

although delta hedging is not perfect, even without transaction costs, the risk reduction 
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                                                       Hedging a Perpetual American Option
YEAR 2006 2007 2008 2009 2010

V 100.00 110.00 99.00 107.91 100.00

K 100.00 100.00 100.00 100.00 100.00

 0.20 0.20 0.20 0.20 0.20

r 0.04 0.04 0.04 0.04 0.04

 0.04 0.04 0.04 0.04 0.04

OUTPUT

ROV 25.00 30.25 24.50 29.11 25.00

HEDGE -50.00 -44.50 -49.95 -45.14 -49.09

ALTER HEDGE 5.50 -5.45 4.81 -3.95

GAIN ROV 5.25 -5.75 4.61 -4.11

GAIN V -5.00 4.45 -4.50 3.31

NET GAIN 0.25 -1.30 0.11 -0.80

CUM GAIN 0.25 -1.05 -0.93 -1.74

F'(V) 0.50 0.55 0.50 0.54 0.50

V* 200.00 200.00 200.00 200.00 200.00

A 0.0025 0.0025 0.0025 0.0025 0.0025

1 2.00 2.00 2.00 2.00 2.00

F''(V) 0.01 0.01 0.01 0.01 0.01

V-K 0.00 10.00 -1.00 7.91 0.00

SUPPOSE V IS TIMES 1.10 0.90 1.09 0.93

HEDGE -B16*B3 B10+C11

ALTER HEDGE (C16-B16)*C3

GAIN ROV -B9+C9

GAIN V -(B10/B3)*(-C3+B3)

NET GAIN C12+C13

CUM GAIN SUM($C$14:C14)

LAND_INVEST HOLDS A PERPETUAL AMERICAN REAL CALL OPTION

HEDGE BY SHORTING DELTA OF V BEGINNING OF EACH YEAR.

RISK

RISK ROV 21.00% -22.99% 18.44% -16.45% 22.95%

RISK ROV HEDGED 1.00% -5.19% 0.46% -3.21% 2.97%
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achieved through delta hedging is significant.  This illustrates the opportunities/problems 

in creating a synthetic real option by dynamic trading in the underlying assets such as 

commodity futures, or asset-related shares, or some focused exchange-traded funds.  

    

SUMMARY 

 

This chapter presents the real perpetual American option model, extended to investment 

decisions. The main idea is that an investor does not maximise the value of his investment 

decision entering the market when the present value of the cash flows equals the 

investment cost. The original Samuelson-McKean (1965) model is shown, along with 

indications of ROV sensitivities.  Then the ROV and V* are derived as the solution to a 

ordinary differential equation.  It is easy, especially in Excel, to show that the solution, 

along with the first and second derivatives of the ROV, actually solves the fundamental 

equation.  Along those lines, it is not hard to imagine the complexities that might be 

encountered in trying to replicate with a “low tracking error” any ROV along a time frame, 

by altering appropriate positions directly in the underlying asset (or similar securities), 

other real options, and financial and commodity forwards/futures.  

 

EXERCISES 

 

EXERCISE 4.1  An office building of 100,000 square feet in Manchester would be worth 

£500 per square foot, and costs £450 per square foot to build (including “amenities”).  

MBA Build has received planning permission on a suitable plot of land which it wants to 

acquire for the development.  The volatility of office buildings is 20%, interest rates 4%, 

expected payout 4%.    What is the value of this land?  At what building value should 

MBA Build start the development? 

 

EXERCISE 4.2    A small house of 2,000 square feet in London would be worth £750 per 

square foot, and costs £850 per square foot to build, including land costs.  City Ltd. has 

identified a suitable plot of land with planning permission, which it wants to acquire for the 

development.  The volatility of London houses is 50%, interest rates 4%, expected payout 
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4%.    What is the value of this development?  At what house value should City start the 

development?  Suppose City had bank deposits of £750,000, liabilities of £500,000, and is 

able to acquire this development for £200,000.  What is the company worth per share, with 

1,000,000 outstanding shares? 

 

EXERCISE 4.3  UMAN has the right in perpetuity to acquire UMIT which is now worth 

£1.1 billion for £1.7 billion.  What is the value of the option, and the optimal value at 

which the acquisition should be made if the volatility of UMIT is 20%, expected payout is 

4%, same as the current interest rate?  What are the problems in applying real option 

theory to this acquisition? 

 

PROBLEMS 

 

PROBLEM 4.4      Show in Excel that your Exercise 4.1 solutions solve equation 4.6. 

 

PROBLEM 4.5      Silverman Bags Co. issues a virtual City Ltd. (Exercise 4.2) for 

£900,000, and hedges the issue by dynamic positions in a traded V.  Indicate the 

appropriate positions, and likely initial profits in this activity. 

 

PROBLEM 4.6     Philip Hedge Fund (“PHF”) buys 10% of City Ltd. at your calculated 

value per share, and hedges by going short in V at 0% transaction cost.  The next four end 

month City share prices are £1.00, £.82, £.80 and £.80, V prices are per square foot 800, 

750, 700 and 750, and interest rates are 4%, 2%, 5% and 4%. Evaluate PF’s performance 

in terms of risk and return.  Does PHF deserve a fee for this activity? 
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Appendix 4A DERIVATIONS 

 
Let F(V) denote the value of the option to invest and let us construct a portfolio, π, which 

replicates the option’s value. Such a portfolio will be formed by a long position in the 

option and a short position (delta) on n units of the project. The value of this portfolio is 

given by: 

nVVF  )(                  (A1) 

The short position in this portfolio will require a payment of Vndt . In a risk neutral 

world, the parameter δ=r-, termed the dividend or payout rate or the convenience yield, 

represents the difference between the riskless rate of return and the expected growth rate  

of the project. In a short period of time this portfolio will be worth: 

VndtndVVdF )(                (A2) 

The changes in the value of the option, dF(V), depend on the stochastic variable, V, 

therefore an expansion of its terms can be done using Ito’s Lemma: 
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Substituting (A1) into (A3) and into (A2) and recollecting the terms we obtain: 
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Since there is no randomness in this portfolio, its return should be a risk free return. Thus, 

denoting r as the risk free rate and =r-: 
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Dividing (A6) by dt and recollecting the terms, we obtain the differential equation 4.6. 
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Guess function solution as 1)(
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Some Power Function Rules 
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Substitute function into Value Matching and Smooth Pasting 

Conditions 
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